Abstract

We simulate the generation of acoustic and tsunami waves generated by submarine landslides using the linear model developed in [1]. The model is able to reproduce both acoustic and surface gravity waves generated by a moving source (e.g. earthquake, landslide) in a vertically stratified ocean. There are only a few studies that focus on the generation of acoustic waves by submarine landslides. In [2], the combined analysis of field data and simulations underline the presence of an interference pattern in the acoustic waves' spectrogram. The interference pattern has a time-varying bandwidth, which is a signature of the submarine landslide dynamics. In a previous work [3], we used the model developed in [1] to reproduce the interference pattern for a static source. Here we use the same model to simulate a submarine landslide in the 2D case. The simulations reproduce the time-varying bandwidth. They are then used to study the influence of two parameters on the acoustic spectrograms, namely landslide velocity and topography. Different velocity profiles available in the literature [4] are tested. For the topography, we use as reference the 2D case simulated in [1]. We also provide illustrations for the tsunami generation by the landslide. [1] Dubois J, Imperiale S, Mangeney A, Bouchut F, Sainte-Marie J. Acoustic and gravity waves in the ocean: a new derivation of a linear model from the compressible Euler equation. Journal of Fluid Mechanics. 2023;970:A28. doi:10.1017/jfm.2023.595 [2] Caplan-Auerbach, J., Dziak, R. P., Bohnenstiehl, D. R., Chadwick, W. W., and Lau, T.-K. (2014), Hydroacoustic investigation of submarine landslides at West Mata volcano, Lau Basin, Geophys. Res. Lett.,  41,  5927– 5934, doi:10.1002/2014GL060964. [3] Dubois, J., Imperiale, S., Mangeney, A., and Sainte-Marie, J.: Simulation of the hydro-acoustic and gravity waves generated by a landslide, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15937, https://doi.org/10.5194/egusphere-egu23-15937, 2023. [4] Farin, M., Mangeney, A., de Rosny, J., Toussaint, R., & Trinh, P.-T. (2019). Relations between the characteristics of granular column collapses and resultant high-frequency seismic signals. Journal of Geophysical Research: Earth Surface, 124, 2987–3021. https://doi.org/10.1029/2019JF005258

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.