Abstract

A submarine landslide is a well-known geohazard that can cause significant damage to offshore engineering facilities. Most standard predicting and mapping methods require expert knowledge, supervision, and fieldwork. In this research, the main objective was to analyze the potential of unsupervised machine learning methods and compare the performance of three different unsupervised machine learning models (k-means, spectral clustering, and hierarchical clustering) in modeling the susceptibility of the submarine landslide. Nine groups of geological factors were selected as the input parameters, which were obtained through field surveys. To estimate submarine landslide susceptibility, all input factors were separated into three or four groups based on data features and environmental variables. Finally, the goodness-of-fit and accuracy of models were validated with both internal metrics (Calinski–Harabasz index, silhouette index, and Davies–Bouldin index) and external metrics (existing landslide distribution, hydrodynamic distribution, and liquefication distribution). The findings of k-means, spectral clustering, and hierarchical clustering performed commendably and accurately in forecasting the submarine landslide susceptibility. Spectral clustering has the greatest congruence with environmental geology parameters. Therefore, the unsupervised machine learning model can be used in submarine-landslide-predicting studies, and the spectral clustering method performed best. Furthermore, machine learning can improve submarine landslide mapping in the future with the development of models and the extension of geological data related to submarine landslides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call