Abstract

AbstractTaylor Glacier, an outlet of the East Antarctic ice sheet, flows through the Transantarctic Mountains and terminates in the Dry Valleys. Understanding how this glacier fluctuates is important for studies of glacial geology, paleoclimate, ice dynamics and ecology. Sublimation is the primary mass-loss process for most of the glacier. Four years of specific balance measurements from the ablation zone show sublimation rates up to 40 cm a−1. We used data from an array of weather stations as inputs to a model for latent heat flux and hence sublimation rate. Calculated and measured ablation rates agree to within uncertainties, indicating that wind speed and vapour pressure gradient (a function of temperature and humidity) are the governing variables, as expected from theory. Measurements and model results together allowed us to examine the spatial and temporal variations of sublimation on the glacier. On average, sublimation is about two times faster in summer than winter. Rapid sublimation occurs during storms and katabatic wind events, but such periods contribute less to the annual total than do slow, persistent losses. Spatially, sublimation reaches a maximum midway along the glacier, where descending surface air currents are focused by the topography of the aptly named tributary, Windy Gully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.