Abstract

We were intrigued by reported observations of reduced brood production and a high number of empty brood cells in bee colonies exposed to sublethal pesticide doses, which could suggest an active removal of larvae. Higher numbers of oenocytes, insect cells responsible for lipid processing and detoxification, were also found in pesticide-exposed larvae. Oenocytes are involved in hydrocarbon metabolism and chemical communication, and we hypothesized that these larvae could display altered cuticular hydrocarbon (CHC) profiles when exposed to pesticides as compared to control larvae. In addition, we proposed that these chemical cues could trigger specific behavioral responses in colony nurses. To test these hypotheses, we analyzed the CHC profiles of artificially reared larvae that had been fed sublethal doses of either dimethoate or clothianidin or fed on lipopolysaccharide (LPS) using gas chromatography-mass spectrometry. We found significant differences in the CHC profiles of these differently treated larvae. In a subsequent behavioral experiment, we transferred clothianidin-treated or LPS-treated larvae into the brood combs of surrogate colonies. Larvae that had been fed either the pesticide or LPS were removed at a significantly higher rate than control larvae. Our results demonstrate that larvae exposed to clothianidin possess altered CHC profiles, are detected in the colony by nurse bees via chemical cues and are actively removed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call