Abstract

A sublethal concentration of imidacloprid can cause chronic toxicity in bees and can impact the behavior of honey bees. The nectar- and water-collecting, and climbing abilities of bees are crucial to the survival of the bees and the execution of responsibilities in bee colonies. Besides behavioral impact, data on the molecular mechanisms underlying the toxicity of imidacloprid, especially by the way of RNA-seq at the transcriptomic level, are limited. We treated Apis mellifera L. with sublethal concentrations of imidacloprid (0.1, 1 and 10 ppb) and determined the effect on behaviors and the transcriptomic changes. The sublethal concentrations of imidacloprid had a limited impact on the survival and syrup consumption of bees, but caused a significant increase in water consumption. Moreover, the climbing ability was significantly impaired by 10 ppb imidacloprid at 8 d. In the RNA-seq analysis, gene ontology (GO) term enrichment indicated a significant down-regulation of muscle-related genes, which might contribute to the impairment in climbing ability of bees. The enriched GO terms were attributed to the up-regulated ribosomal protein genes. Considering the ribosomal and extra-ribosomal functions of the ribosomal proteins, we hypothesized that imidacloprid also causes cell dysfunction. Our findings further enhance the understanding of imidacloprid sublethal toxicity.

Highlights

  • Imidacloprid is widely used against sucking pest insects because of its high selectivity and low toxicity to mammals[1]

  • Limited studies have been conducted investigating the molecular mechanisms underlying the side-effects of imidacloprid on honey bees at sublethal concentrations, especially by the way of RNA-seq at the transcriptomic level

  • To investigate the effects of sublethal concentrations of imidacloprid (0.1 to 10 ppb) on honey bees, we studied both the behaviors and molecular mechanism after oral exposure to imidacloprid-treated syrup

Read more

Summary

Introduction

Imidacloprid is widely used against sucking pest insects because of its high selectivity and low toxicity to mammals[1]. Sublethal effects are physiological or behavioral effects on individuals who survive an exposure to a pesticide whose dose/concentration can be sublethal or lethal[8], whereas a non-observable-effect concentration (NOEC) is the highest concentration of a toxicant to which organisms are exposed during a test that causes no observable adverse effect on the test organisms[9] In addition to their impact on learning and flying abilities, sublethal concentrations of imidacloprid affect the feeding behaviors of bees[10,11,12]. Syrup- and water- consumption, and climbing behaviors of bees exposed to sublethal concentrations of imidacloprid. The purpose of the current study was to advance our understanding of exposure to sublethal concentrations of imidacloprid using bees as a model organism

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.