Abstract
Atlantic salmon ( Salmo salar L.) postsmolts (0.17–0.26 kg) were exposed to four different levels of carbon dioxide partial pressure for 43 days in an open flow system: 0.6 mm Hg (control), 4.9 mm Hg (low), 12 mm Hg (medium), and 20 mm Hg (high). The water temperature was 15–16°C and the salinity 34‰. In the low carbon dioxide group ( P CO 2 =4.9 mm Hg; 10.6 mg/l), no significant differences were found in blood parameters (haematocrit, plasma chloride and plasma sodium) or in growth parameters (weight, length and condition factor) when compared to the control group. After 43 days, the mean plasma chloride concentration for the medium group ( P CO 2 =12 mm Hg; 26 mg/l) was significantly reduced, while weight and condition factor were slightly, although not significantly, lowered. For the high carbon dioxide group ( P CO 2 =20 mm Hg; 44 mg/l) plasma sodium and plasma pH were significantly increased and plasma chloride, oxygen consumption, weight, length and condition factor were significantly reduced at the end of exposure. There was no mortality in the control group or in the low carbon dioxide group. The mortalities in the medium and high carbon dioxide groups were 1.1 and 4.3%, respectively. Nephrocalsinosis was not observed in any of the groups. The results of the present investigation indicate that the CO 2 concentration of the low group may represent a safe level for Atlantic salmon postsmolts when the temperature is 15–16°C and the oxygen level is 6–7 mg/l. Further studies are required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.