Abstract

BackgroundDuring photodynamic therapy (PDT) in the treatment of a primary endodontic infection, it is extremely likely that microorganisms would be exposed to sub-lethal doses of PDT (sPDT). Although sPDT cannot kill microorganisms, it can considerably influence microbial virulence. This study was conducted to characterize the effect of sPDT using toluidine blue O (TBO), methylene blue (MB), and indocyanine green (ICG) on biofilm formation ability and metabolic activity of Enterococcus faecalis. MethodsThe antimetabolic and antibiofilm potential of ICG-, TBO-, and MB-sPDT against E. faecalis was analyzed at sub-lethal doses (1/2–1/64 minimum inhibitory concentration) using the XTT reduction assay, crystal violet assay, and scanning electron microscopy. ResultsHigher doses of sPDT adversely affected biofilm formation ability and metabolic activity. ICG-, TBO-, and MB-PDT at a maximum sub-lethal dose markedly reduced the formation of biofilm up to 42.8%, 22.6%, and 19.5%, respectively. ICG-, TBO-, and MB-sPDT showed a marked reduction in bacterial metabolic activity by 98%, 94%, and 82%, respectively. ICG-PDT showed a stronger inhibitory effect on biofilm formation in E. faecalis than MB- and TBO-PDT at sub-lethal levels. Interestingly, a gradual increase in metabolic activity and biofilm formation upon exposure to a lower dose of test sPDT were observed. ConclusionsPDT showed dual effect on biofilm formation ability and metabolic activity of E. faecalis. High doses revealed antimetabolic and antibiofilm potential activity, whereas lower doses had conflicting results. Hence, when PDT is prescribed in clinical settings, the dose of PDT used in vivo should be taken into consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call