Abstract

We perform a principal component analysis (PCA) of $v_3(p_T)$ in event-by-event hydrodynamic simulations of Pb+Pb collisions at the Large Hadron Collider (LHC). The PCA procedure identifies two dominant contributions to the two-particle correlation function, which together capture 99.9\% of the squared variance. We find that the subleading flow (which is the largest source of flow factorization breaking in hydrodynamics) is predominantly a response to the radial excitations of a third-order eccentricity. We present a systematic study of the hydrodynamic response to these radial excitations in 2+1D viscous hydrodynamics. Finally, we construct a good geometrical predictor for the orientation angle and magnitude of the leading and subleading flows using two Fourier modes of the initial geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.