Abstract

Chaos, in quantum systems, can be diagnosed by certain out-of-time-order correlators (OTOCs) that obey the chaos bound of Maldacena, Shenker, and Stanford (MSS). We begin by deriving a dispersion relation for this class of OTOCs, implying that they must satisfy many more constraints beyond the MSS bound. Motivated by this observation, we perform a systematic analysis obtaining an infinite set of constraints on the OTOC. This infinite set includes the MSS bound as the leading constraint. In addition, it also contains subleading bounds that are highly constraining, especially when the MSS bound is saturated by the leading term. These new bounds, among other things, imply that the MSS bound cannot be exactly saturated over any duration of time, however short. Furthermore, we derive a sharp bound on the Lyapunov exponent λ2 ≤ frac{6pi }{beta } of the subleading correction to maximal chaos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.