Abstract

Abstract Many lakes in volcanic regions are fed by hot springs that, in some basins, can contribute a large percentage of the annual recharge, especially during times of aridity. It is important to recognize any contemporary hydrothermal contribution in paleoenvironmental reconstruction of lake basins because recharge from thermal waters can potentially confuse paleoclimatic signals preserved in the lacustrine sedimentary record. Hot spring deposits (travertine, sinter) provide the most tangible evidence for thermal recharge to lakes. Although subaerial spring deposits have been widely studied, lacustrine thermal spring deposits, especially sublacustrine siliceous sinters, remain poorly known. Detailed field, petrographic and scanning electron microscope (SEM) studies have been made of fossil sublacustrine sinter exposed at Soro hot springs along the northeastern shoreline of Ol Kokwe, a volcanic island in Lake Baringo, Kenya. Modern hot springs at Soro, which discharge Na–HCO3–Cl waters from a deep reservoir (∼180 °C ), have thin (1–10 mm), friable microbial silica crusts around their subaerial vents, but thicker (>1 cm) sinter deposits are not forming. The fossil sinter, which is present as intergranular cements and crusts in littoral conglomerates and sandstones, is composed mainly of opaline silica (opal-A). Three types of fossil sinter are recognized: (1) massive structureless silica, which fills intergranular pores and forms crusts up to 5 cm thick; (2) pore-lining silica, some of which is isopachous, and (3) laminated silica crusts, which formed mainly on the upper surfaces of detrital particles. All three types contain well-preserved diatoms including lacustrine planktonic forms. Microbial remains, mainly filamentous and coccoid bacteria (including cyanobacteria) and extracellular polymeric gels, are locally abundant in the opaline silica, together with detrital clays and thin laminae composed of authigenic chlorite (?). Most of the hydrothermal silica precipitated when the thermal springs were submerged by fresh lake water. Silica precipitated upon rapid cooling of thermal (∼90 °C ) waters at and just below their interface with the overlying cooler (∼25 °C ) lake waters. Microbial mats locally acted as a filter that limited mixing and rapid dilution of the thermal fluids. Some of the silica originally may have been soft and partly gelatinous. Planktonic diatoms and detrital clay rained down, then became incorporated in the amorphous silica. Following a fall in lake level, the opal-A lithified and partly altered to cristobalite (opal-C) and chalcedony. The lowest fossil sinters were later encrusted by calcite stromatolites, with calcite and quartz forming late pore-filling cements. The age of the sublacustrine sinters is unknown, but some of the deposits could date back to the late Pleistocene. Similar conglomerates cemented by hydrothermal silica are present along fault lines at neighbouring Lake Bogoria. Such rocks may provide evidence for deep, hot fluid recharge to lakes when encountered in the geological record.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call