Abstract

In the field of psychology, it has been well established that there are two types of motor imagery such as kinesthetic motor imagery (KMI) and visual motor imagery (VMI), and the subjective evaluation for vividness of motor imagery each differs across individuals. This study aimed to examine how the motor imagery ability assessed by the psychological scores is associated with the physiological measure using electroencephalogram (EEG) sensorimotor rhythm during KMI task. First, 20 healthy young individuals evaluated subjectively how vividly they can perform each of KMI and VMI by using the Kinesthetic and Visual Imagery Questionnaire (KVIQ). We assessed their motor imagery abilities by summing each of KMI and VMI scores in KVIQ (KMItotal and VMItotal). Second, in physiological experiments, they repeated two strengths (10 and 40% of maximal effort) of isometric voluntary wrist-dorsiflexion. Right after each contraction, they also performed its KMI. The scalp EEGs over the sensorimotor cortex were recorded during the tasks. The EEG power is known to decrease in the alpha-and-beta band (7–35 Hz) from resting state to performing state of voluntary contraction (VC) or motor imagery. This phenomenon is referred to as event-related desynchronization (ERD). For each strength of the tasks, we calculated the maximal peak of ERD during VC, and that during its KMI, and measured the degree of similarity (ERDsim) between them. The results showed significant negative correlations between KMItotal and ERDsim for both strengths (p < 0.05) (i.e., the higher the KMItotal, the smaller the ERDsim). These findings suggest that in healthy individuals with higher motor imagery ability from a first-person perspective, KMI efficiently engages the shared cortical circuits corresponding with motor execution, including the sensorimotor cortex, with high compliance.

Highlights

  • Motor imagery has been defined as a dynamic internal representation of a given motor act without any overt motor output (Decety and Grezes, 1999), and suggested to utilize common neural substrate with motor execution (Decety, 1996; Jeannerod and Frak, 1999; Gerardin et al, 2000; Hanakawa et al, 2003)

  • In the field of psychology, the ability of motor imagery has been often measured via introspective reports of the vividness of imagery experiences through validated questionnaires such as the Kinesthetic and Visual Imagery Questionnaire (KVIQ) (Malouin et al, 2007)

  • Analyses We evaluated the vividness of motor imagery by summing all KVIQ scores for kinesthetic motor imagery (KMI) (KMItotal) and visual motor imagery (VMI) (VMItotal), respectively

Read more

Summary

Introduction

Motor imagery has been defined as a dynamic internal representation of a given motor act without any overt motor output (Decety and Grezes, 1999), and suggested to utilize common neural substrate with motor execution (Decety, 1996; Jeannerod and Frak, 1999; Gerardin et al, 2000; Hanakawa et al, 2003). The roles of ventral and dorsal premotor cortices perform planning, preparation, execution, and imagery of motor acts (Hetu et al, 2013). Cerebellar, and premotor regions, which are known to contain internal representations for both movements and the body itself, are thought to play a decisive role in the generation of motor imagery (Lorey et al, 2011). In the field of psychology, the ability of motor imagery has been often measured via introspective reports of the vividness of imagery experiences through validated questionnaires such as the Kinesthetic and Visual Imagery Questionnaire (KVIQ) (Malouin et al, 2007). Several psychological studies have reported longitudinal changes in motor imagery ability due to aging (Malouin et al, 2010) or motor imagery training (Oostra et al, 2015) by measuring KMI and VMI scores of the introspective questionnaire

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call