Abstract

Inter-subjects’ variability in functional brain networks has been extensively investigated in the last few years. In this context, unveiling subject-specific characteristics of EEG features may play an important role for both clinical (e.g., biomarkers) and bio-engineering purposes (e.g., biometric systems and brain computer interfaces). Nevertheless, the effects induced by multi-sessions and task-switching are not completely understood and considered. In this work, we aimed to investigate how the variability due to subject, session and task affects EEG power, connectivity and network features estimated using source-reconstructed EEG time-series. Our results point out a remarkable ability to identify stable subject features within a given task together with striking independence from the session. The results also show a relevant effect of task-switching, which is comparable to individual variability. This study suggests that power and connectivity EEG features may be adequate to detect stable (over-time) individual properties within predefined and controlled tasks and that these findings are consistent over a range of connectivity metrics, different epoch lengths and parcellation schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.