Abstract

The ability of some fishes to reversibly remodel their gill morphology has become a focus of research after the discovery of extreme morphological gill plasticity in crucian carp and goldfish—both members of the cyprinid genus Carassius. Their lamellae are largely embedded in an interlamellar cell mass (ILCM) during normoxic conditions in cold water. The ILCM regresses in hypoxia, warm water, and during exercise, whereby the respiratory surface area and the capacity for oxygen uptake are greatly increased. There may be several reasons for covering the lamellae when oxygen needs are low. Reducing osmoregulatory costs have been suggested as an advantage of gill remodeling, but this has been difficult to show, putting the importance of the osmo-respiratory compromise into question. Other reasons could be to limit uptake of toxic substances and to reduce the risks for infections. In support for the latter, we present evidence showing that crucian carp infected by gill flukes maintain their ILCM when exposed to hypoxia. So far, gill remodeling in response to oxygen needs has been seen in several cyprinids, killifish and eel. In response to other environmental factors it may also occur in salmonids and anabantoids, revealing a phylogenetically widespread occurrence among teleosts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call