Abstract

Affective computing is one of the key technologies to achieve advanced brain-machine interfacing. It is increasingly concerning research orientation in the field of artificial intelligence. Emotion recognition is closely related to affective computing. Although emotion recognition based on electroencephalogram (EEG) has attracted more and more attention at home and abroad, subject-independent emotion recognition still faces enormous challenges. We proposed a subject-independent emotion recognition algorithm based on dynamic empirical convolutional neural network (DECNN) in view of the challenges. Combining the advantages of empirical mode decomposition (EMD) and differential entropy (DE), we proposed a dynamic differential entropy (DDE) algorithm to extract the features of EEG signals. After that, the extracted DDE features were classified by convolutional neural networks (CNN). Finally, the proposed algorithm is verified on SJTU Emotion EEG Dataset (SEED). In addition, we discuss the brain area closely related to emotion and design the best profile of electrode placements to reduce the calculation and complexity. Experimental results show that the accuracy of this algorithm is 3.53 percent higher than that of the state-of-the-art emotion recognition methods. What's more, we studied the key electrodes for EEG emotion recognition, which is of guiding significance for the development of wearable EEG devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.