Abstract

LFF571 is a novel semisynthetic thiopeptide antibacterial that is undergoing investigation for safety and efficacy in patients with moderate Clostridium difficile infections. LFF571 inhibits bacterial protein synthesis by interacting with elongation factor Tu (EF-Tu) and interrupting complex formation between EF-Tu and aminoacyl-tRNA. Given this mechanism of action, we hypothesized that concentrations of LFF571 below those necessary to inhibit bacterial growth would reduce steady-state toxin levels in C. difficile cultures. We investigated C. difficile growth and toxin A and B levels in the presence of LFF571, fidaxomicin, vancomycin, and metronidazole. LFF571 led to strain-dependent effects on toxin production, including decreased toxin levels after treatment with subinhibitory concentrations, and more rapid declines in toxin production than in inhibition of colony formation. Fidaxomicin, which is an RNA synthesis inhibitor, conferred a similar pattern to LFF571 with respect to toxin levels versus viable cell counts. The incubation of two toxigenic C. difficile strains with subinhibitory concentrations of vancomycin, a cell wall synthesis inhibitor, increased toxin levels in the supernatant over those of untreated cultures. A similar phenomenon was observed with one metronidazole-treated strain of C. difficile. These studies indicate that LFF571 and fidaxomicin generally result in decreased C. difficile toxin levels in culture supernatants, whereas treatment of some strains with vancomycin or metronidazole had the potential to increase toxin levels. Although the relevance of these findings remains to be studied in patients, reducing toxin levels with sub-growth-inhibitory concentrations of an antibiotic is hypothesized to be beneficial in alleviating symptoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call