Abstract

Flexible navigation demands knowledge of boundaries, routes and their relationships. Within a multi-path environment, a subpopulation of subiculum neurons robustly encoded the axis of travel. The firing of axis-tuned neurons peaked bimodally, at head orientations 180° apart. Environmental manipulations showed these neurons to be anchored to environmental boundaries but to lack axis tuning in an open arena. Axis-tuned neurons thus provide a powerful mechanism for mapping relationships between routes and the larger environmental context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.