Abstract

We consider a quantum two-level system in bichromatic classical time-periodic fields, the frequency of one of which far exceeds that of the other. Based on systematic separation of timescales and averaging over the fast motion a reduced quantum dynamics in the form of a nonlinear forced Mathieu equation is derived to identify the stable oscillatory resonance zones intercepted by unstable zones in the frequency-amplitude plot. We show how this forcing of the dressed two-level system may generate the subharmonics and superharmonics of the weak field in the stable region, which can be amplified by optimization of the strength of the high frequency field. We have carried out detailed numerical simulations of the driven quantum dynamics to corroborate the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.