Abstract

In this paper, the bifurcations of subharmonic orbits are investigated for six-dimensional non-autonomous nonlinear systems using the improved subharmonic Melnikov method. The unperturbed system is composed of three independent planar Hamiltonian systems such that the unperturbed system has a family of periodic orbits. The key problem at hand is the determination of the sufficient conditions on some of the periodic orbits for the unperturbed system to generate the subharmonic orbits after the periodic perturbations. Using the periodic transformations and the Poincare map, an improved subharmonic Melnikov method is presented. Two theorems are obtained and can be used to analyze the subharmonic dynamic responses of six-dimensional non-autonomous nonlinear systems. The subharmonic Melnikov method is directly utilized to investigate the subharmonic orbits of the six-dimensional non-autonomous nonlinear system for a laminated composite piezoelectric rectangular plate. Using the subharmonic Melnikov method, the bifurcation function of the subharmonic orbit is obtained. Numerical simulations are used to verify the analytical predictions. The results of the numerical simulation also indicate the existence of the subharmonic orbits for the laminated composite piezoelectric rectangular plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.