Abstract

We study autonomous and non-autonomous perturbations of single-degree-of-freedom Hamiltonian systems and give sufficient conditions for their real-analytic non-integrability near periodic orbits of the unperturbed systems such that the first integrals and commutative vector fields depend analytically on the small parameter by using the subharmonic Melnikov functions. Moreover, we show that autonomous dissipative perturbations prevent real-analytic integrability of these systems. Our results reveal that the perturbed systems can be real-analytically non-integrable even if there is no homoclinic/heteroclinic orbit in the unperturbed systems. We illustrate our theory with a periodically forced duffing equation and a damped Morse oscillator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.