Abstract

Spectral degeneracies where eigenvalues and eigenvectors simultaneously coalesce, also known as exceptional points, are a natural consequence of the strong non-normality of the Orr–Sommerfeld operator describing the evolution of infinitesimal disturbances in parallel shear flows. While the resonances associated with these points give rise to algebraic growth, the development of non-modal stability theory exploiting specific perturbation structures with much larger potential for transient energy growth has led to waning interest in spectral degeneracies. The appearance of subharmonic eigenvalue orbits, recently discovered in the periodic spectrum of pulsating Poiseuille flow, can be traced back to the coalescence of eigenvalues at exceptional points. We present a thorough analysis of the spectral properties of the linear operator to identify exceptional points and accurately map the prevalence of subharmonic eigenvalue orbits for a large range of pulsation amplitudes and frequencies. This information is then combined with solutions of the linear initial value problem to analyse the impact of the appearance of these orbits on the temporal evolution of linear disturbances in pulsating Poiseuille flow. The periodic amplification phases are shown to be heralded by repeated non-normal growth bursts that are intensified by the formation of subharmonic orbits involving the leading eigenvalues. These bursts are associated with the change of alignment of the perturbation from the decaying towards the amplified branch of the subharmonic eigenvalue orbits in a so-called branch transition process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call