Abstract

We study the substructure population of Milky Way (MW)-mass halos in the $\Lambda$CDM cosmology using a novel procedure to extrapolate subhalo number statistics beyond the resolution limit of N-body simulations. The technique recovers the mean and the variance of the subhalo abundance, but not its spatial distribution. It extends the dynamic range over which precise statistical predictions can be made by the equivalent of performing a simulation with 50 times higher resolution, at no additional computational cost. We apply this technique to MW-mass halos, but it can easily be applied to halos of any mass. We find up to $20\%$ more substructures in MW-mass halos than found in previous studies. Our analysis lowers the mass of the MW halo required to accommodate the observation that the MW has only three satellites with a maximum circular velocity $V_{max}\ge30 km/s$ in the $\Lambda$CDM cosmology. The probability of having a subhalo population similar to that in the MW is $20\%$ for a virial mass, $M_{200}=1\times10^{12} M_\odot$ and practically zero for halos more massive than $M_{200}=2\times10^{12} M_\odot$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.