Abstract

Let R be a commutative ring. The lattice of subgroups of a Chevalley group G(Φ,R) containing the subgroup D(R) is studied, where D is a subfunctor of G(Φ, — ). Assuming that over any field F the normalizer of the group D(F) is “closed to be maximal,” it is proved that under some technical conditions the lattice is standard. A condition, on the normalizer of D(R) is studied in the case, where D(R) is the elementary subgroup of another Chevalley group G(Ψ,R) embedded into G(Φ,R).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.