Abstract
We propose a novel recursive partitioning method for identifying subgroups of subjects with enhanced treatment effects based on a differential effect search algorithm. The idea is to build a collection of subgroups by recursively partitioning a database into two subgroups at each parent group, such that the treatment effect within one of the two subgroups is maximized compared with the other subgroup. The process of data splitting continues until a predefined stopping condition has been satisfied. The method is similar to 'interaction tree' approaches that allow incorporation of a treatment-by-split interaction in the splitting criterion. However, unlike other tree-based methods, this method searches only within specific regions of the covariate space and generates multiple subgroups of potential interest. We develop this method and provide guidance on key topics of interest that include generating multiple promising subgroups using different splitting criteria, choosing optimal values of complexity parameters via cross-validation, and addressing Type I error rate inflation inherent in data mining applications using a resampling-based method. We evaluate the operating characteristics of the procedure using a simulation study and illustrate the method with a clinical trial example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.