Abstract

Abstract As the size of a multiprocessor system grows, the probability that faults occur in this system increases. One measure of the reliability of a multiprocessor system is the probability that a fault-free subsystem of a certain size still exists with the presence of individual faults. In this paper, we use the probabilistic fault model to establish the subgraph reliability for $AG_n$, the $n$-dimensional alternating group graph. More precisely, we first analyze the probability $R_n^{n-1}(p)$ that at least one subgraph with dimension $n-1$ is fault-free in $AG_n$, when given a uniform probability of a single vertex being fault-free. Since subgraphs of $AG_n$ intersect in rather complicated manners, we resort to the principle of inclusion–exclusion by considering intersections of up to five subgraphs and obtain an upper bound of the probability. Then we consider the probabilistic fault model when the probability of a single vertex being fault-free is nonuniform, and we show that the upper bound under these two models is very close to the lower bound obtained in a previous result, and it is better than the upper bound deduced from that of the arrangement graph, which means that the upper bound we obtained is very tight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call