Abstract
Many real-life applications require processing graph data across heterogeneous sources. In this paper, we define the graph federation that indicates that the graph data sources are temporarily federated and offer their data for users. Next, we propose a new framework FedGraph to efficiently and effectively perform subgraph matching, which is a crucial application in graph federation. FedGraph consists of three phases, including query decomposition, distributed matching, and distributed joining. We also develop new efficient approximation algorithms and apply them in each phase to attack the NP-hard problem. The evaluations are conducted in a real test bed using both real-life and synthetic graph datasets. FedGraph outperforms the state-of-the-art methods, reducing the execution time and communication cost by 37.3 × and 61.8 ×, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.