Abstract

AbstractMicrofabrics formed by flat particles and voids in till samples from the upper Ürümqi river valley, Tien Shan, northwestern China, were analyzed using three mutually perpendicular thin sections. Chi-squared tests were used to determine significance levels of the orientations of both particles and voids. The basal tills in an end moraine, on the stoss sides of two roche moutonnées, on the stoss sides of a drumlin with a rock core, and on the lee side of the same drumlin far from the rock core have strong particle and void microfabrics. Field evidence suggests that these tills were deformed in a subglacial setting. Thus, consistent with recent laboratory studies of till fabric development, deformation is believed to be responsible for the strong particle and void microfabrics. In the same end moraine, particle microfabrics in an overlying till were strong, but void microfabrics were weak. This till is believed to have been formed by dumping and rolling of debris from hill slopes and of ablation moraine from the glacier surface. The weak void microfabric is interpreted to indicate that the till was not consolidated and hence not sheared under the weight of the glacier, despite the strong particle microfabric. Basal tills on the lee sides of the roche moutonnees, and on the lee side of the drumlin but near its core, have weak microfabrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.