Abstract

AbstractFlow resistance in subglacial conduits regulates the basal water pressure and sliding speeds of glaciers by controlling drainage efficiency and conduit enlargement and closure. Flow dynamics within subglacial conduits, however, remain poorly understood due to limited accessibility. Here we report the results of the first computational fluid dynamics simulations of flow within a realistic subglacial conduit beneath Hansbreen, a polythermal glacier in Svalbard, Norway. The simulated friction factor is 2.34 ± 0.05, which is around 5 to 230 times greater than values (0.01–0.5) commonly used in glacier hydrological modeling studies. Head losses from sinuosity and cross‐sectional variations dominate flow resistance (∼ 94%), whereas surface roughness from rocks and ice features contributes only a small portion (∼6%). Most glacier hydrology models neglect head losses due to sinuosity and cross‐sectional variations and thus severely underestimate flow resistance, overestimating the conduit peak effective pressure by 2 times and underestimating the conduit enlargement area by 3.4 times, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.