Abstract

AbstractPine Island Glacier (PIG), West Antarctica, has been experiencing acceleration in its flow speed and mass loss for nearly two decades, driven in part by an increase in the delivery of relatively warm Circumpolar Deep Water (CDW). However, at present, the configuration of the sub-ice-shelf cavity and bed conditions beneath the PIG ice shelf that dictate such oceanic influences remain poorly understood. Here, we use aerogravity data and ocean bottom depths measured by an autonomous underwater vehicle (AUV) to model the bathymetry and sediment layer thickness beneath the PIG ice shelf. Results reveal that the deep basins, previously found by AUV on both landward and seaward sides of a submarine ridge, extend substantially to the north and south. The water column thickness of the basins reaches 400-550 m on the landward side of the ridge and 500-600 m on the seaward side. The sediment layer covers the whole expanse of the seabed beneath the ice shelf, and the thickness is in the range ∼200-1000 m. The thinnest sediments (<200 m) are found on the seaward slope of the submarine ridge, suggesting that erosion by advancing ice may have been concentrated in the lee of the topographic high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.