Abstract
We study turn-based quantitative multiplayer non zero-sum games played on finite graphs with reachability objectives. In such games, each player aims at reaching his own goal set of states as soon as possible. A previous work on this model showed that Nash equilibria (resp. secure equilibria) are guaranteed to exist in the multiplayer (resp. two-player) case. The existence of secure equilibria in the multiplayer case remained, and is still an open problem. In this paper, we focus our study on the concept of subgame perfect equilibrium, a refinement of Nash equilibrium well-suited in the framework of games played on graphs. We also introduce the new concept of subgame perfect secure equilibrium. We prove the existence of subgame perfect equilibria (resp. subgame perfect secure equilibria) in multiplayer (resp. two-player) quantitative reachability games. Moreover, we provide an algorithm deciding the existence of secure equilibria in the multiplayer case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.