Abstract

A cyber security problem is considered in a networked system formulated as a resilient graph problem based on a game theoretic approach. The connectivity of the underlying graph of the network system is reduced by an attacker who removes some of the edges whereas the defender attempts to recover them. Both players are subject to energy constraints so that their actions are restricted and cannot be performed continuously. We provide a subgame perfect equilibrium analysis and fully characterize the optimal strategies for the attacker and the defender in terms of edge connectivity and the number of connected components of the graph. The resilient graph game is then applied to the multiagent consensus problem. We study how the attacks and the recovery on the edges affect the consensus process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.