Abstract
We study the division of a surplus under majoritarian bargaining in the three-person case. In a stationary equilibrium as derived by Baron and Ferejohn (1989), the proposer offers one third times the discount factor of the surplus to a second player and allocates no payoff to the third player, a proposal which is accepted without delay. Laboratory experiments show various deviations from this equilibrium, where different offers are typically made and delay may occur before acceptance. We address the issue to what extent these findings are compatible with subgame perfect equilibrium and characterize the set of subgame perfect equilibrium payoffs for any value of the discount factor. We show that for any proposal in the interior of the space of possible agreements there exists a discount factor such that the proposal is made and accepted. We characterize the values of the discount factor for which equilibria with one-period delay exist. We show that any amount of equilibrium delay is possible and we construct subgame perfect equilibria such that arbitrary long delay occurs with probability one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.