Abstract

We study subgame φ-maxmin strategies in two-player zero-sum stochastic games with finite action spaces and a countable state space. Here φ denotes the tolerance function, a function which assigns a non-negative tolerated error level to every subgame. Subgame φ-maxmin strategies are strategies of the maximizing player that guarantee the lower value in every subgame within the subgame-dependent tolerance level as given by φ. First, we provide necessary and sufficient conditions for a strategy to be a subgame φ-maxmin strategy. As a special case we obtain a characterization for subgame maxmin strategies, i.e. strategies that exactly guarantee the lower value at every subgame. Secondly, we present sufficient conditions for the existence of a subgame φ-maxmin strategy. Finally, we show the possibly surprising result that the existence of subgame φ-maxmin strategies for every positive tolerance function φ is equivalent to the existence of a subgame maxmin strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.