Abstract

Superfluorescence emission around 391 nm is generated when nitrogen molecules are irradiated by a strong 800-nm pump laser and a delayed seed laser. The emission corresponds to the transition between N2+(B2Σu+,ν″=0) and N2+(X2Σg+,ν=0). When another weak 800-nm probe laser is injected and scanned after the pump laser, the superfluorescence intensity is observed to exhibit periodical modulation. The period is determined to be ~2.63 fs, corresponding to the transition frequency between N2+(A2Πu,ν'=2) and N2+(X2Σg+,ν=0). Based on theoretical derivation, these observations can be attributed to the laser-induced population transfer and polarization variation between the relevant electronic states of ionized nitrogen molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.