Abstract

The information of a cell is primarily contained in deoxyribonucleic acid (DNA). There is a flow of DNA information to protein sequences via ribonucleic acids (RNA) through transcription and translation. These entities are vital for the genetic process. Recent epigenetics developments also show the importance of the genetic material and knowledge of their attributes and functions. However, the growth in these entities’ available features or functionalities is still slow due to the time-consuming and expensive in vitro experimental methods. In this paper, we have proposed an ensemble classification algorithm called SubFeat to predict biological entities’ functionalities from different types of datasets. Our model uses a feature subspace-based novel ensemble method. It divides the feature space into sub-spaces, which are then passed to learn individual classifier models. The ensemble is built on these base classifiers that use a weighted majority voting mechanism. SubFeat tested on four datasets comprising two DNA, one RNA, and one protein dataset, and it outperformed all the existing single classifiers and the ensemble classifiers. SubFeat is made available as a Python-based tool. We have made the package SubFeat available online along with a user manual. It is freely accessible from here: https://github.com/fazlulhaquejony/SubFeat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.