Abstract

The Minimum Fill-in problem is to decide if a graph can be triangulated by adding at most k edges. Kaplan, Shamir, and Tarjan [FOCS 1994] have shown that the problem is solvable in time O(2O(k) + k2nm) on graphs with n vertices and m edges and thus is fixed parameter tractable. Here, we give the first subexponential parameterizedv algorithm solving Minimum Fill-in in time [EQUATION]. This substantially lowers the complexity of the problem. Techniques developed for Minimum Fill-in can be used to obtain subexponential parameterized algorithms for several related problems including Minimum Chain Completion, Chordal Graph Sandwich, and Triangulating Colored Graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.