Abstract
We give a subexponential time approximation algorithm for the Unique Games problem. The algorithms run in time that is exponential in an arbitrarily small polynomial of the input size, n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ε</sup> . The approximation guarantee depends on ε, but not on the alphabet size or the number of variables. We also obtain a subexponential algorithms with improved approximations for SMALL-SET EXPANSION and MULTICUT. For MAX CUT, SPARSEST CUT, and VERTEX COVER, we give subexponential algorithms with improved approximations on some interesting subclasses of instances. Khot's Unique Games Conjecture (UGC) states that it is NP-hard to achieve approximation guarantees such as ours for the Unique Games. While our results stop short of refuting the UGC, they do suggest that Unique Games is significantly easier than NP-hard problems such as MAX 3SAT, MAX 3LIN, Label Cover and more, that are believed not to have a subexponential algorithm achieving a non-trivial approximation ratio. The main component in our algorithms is a new result on graph decomposition that may have other applications. Namely we show that for every ε > 0 and every regular n-vertex graph G, by changing at most ε fraction of G's edges, one can break G into disjoint parts so that the stochastic adjacency matrix of the induced graph on each part has at most n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ε</sup> eigenvalues larger than 1 - η, where η depends polynomially on ε.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.