Abstract

Suberin is a lipophilic macromolecule found in specialized plant cell walls, wherever insulation or protection toward the surroundings is needed. Suberized cells form the periderm, the tissue that envelops secondary stems as part of the bark, and develop as the sealing tissue after wounding or leaf abscission. Suberin is a complex polyester built from poly-functional long-chain fatty acids (suberin acids) and glycerol. The suberin acids composition of a number of plant tissues and species is now established, but how the polyester macromolecule is assembled within the suberized cell walls is not known. In the last years contributions from several areas have however significantly enriched our understanding of suberin. The primary structure of the polyester, i.e., how the suberin acids and glycerol are sequentially linked was revealed, together with the stereochemistry of the mid-chain functional groups some suberin acids have; solid-state NMR studies showed the presence of methylene chains spatially separated and with different molecular mobility; biophysical studies showed the membrane behavior of suberin acids derivatives, allowing new insights on structure-properties relationships; and a number of candidate genes were conclusively related to suberin biosynthesis. The comprehension of suberin as a macromolecule will be essential to understand its vital protective roles in plants and how they will deal with eventual environmental changes. Suberin is also expected to be a source for high-performing bio-based chemicals, taking advantage of the structural uniqueness of their constituent suberin acids.

Highlights

  • Two main types of suberins can be recognized taking into account their dominant suberin acids (Holloway, 1983): there is a group of suberins where the C18 epoxide and vic-diol α,ω-diacids and ω-hydroxyacids are overwhelming, with minor proportions of saturated chain monomers, like in Kielmeyeria coriacea bark periderm (Rios et al, 2014); and there is another group of suberins where the mono-unsaturated C18:1and saturated chain monomers are dominant, and the C18 epoxide and vic-diol suberin acids are present in small amounts or event absent, as are the cases in Pseudotsuga menziessii bark and potato periderm (Graça and Santos, 2007)

  • Suberized cell walls include non-soluble polyphenolic materials, the “polyaromatics,” in significant quantities: in cork, assessed as lignin, they represent approximately 25% of all structural components (“extractive-free” basis) (Pereira, 1988); in native potato periderm, 31% of insoluble phenolics were determined based in the initial weight, after suberin, polysaccharides and extractives removal (Mattinen et al, 2009); even higher values have been found in wound-induced potato periderm, with a ratio of polymeric phenolics to aliphatic suberin of 2:1, as measured by the respective carbon peak areas in solid-state 13C NMR analysis (Garbow et al, 1989); in the periderm of six subterranean periderms, residual polyaromatics, after the removal of ester-linked suberin, represented from 25 to 30% of the extractive-free initial material (Kolattukudy et al, 1975)

  • Studies on the biosynthetic pathways leading to suberin monomers started in the 1970s (Kolattukudy and Espelie, 1989), but most of the knowledge on the specific genes and proteins involved on the monomers synthesis and their assembling as a polyester in suberizing plant cells was obtained in the last decade

Read more

Summary

José Graça *

Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal. Suberin is a lipophilic macromolecule found in specialized plant cell walls, wherever insulation or protection toward the surroundings is needed. Suberin is a complex polyester built from poly-functional long-chain fatty acids (suberin acids) and glycerol. The suberin acids composition of a number of plant tissues and species is established, but how the polyester macromolecule is assembled within the suberized cell walls is not known. The primary structure of the polyester, i.e., how the suberin acids and glycerol are sequentially linked was revealed, together with the stereochemistry of the mid-chain functional groups some suberin acids have; solidstate NMR studies showed the presence of methylene chains spatially separated and with different molecular mobility; biophysical studies showed the membrane behavior of suberin acids derivatives, allowing new insights on structure-properties relationships; and a number of candidate genes were conclusively related to suberin biosynthesis. The comprehension of suberin as a macromolecule will be essential to understand its vital protective roles in plants and how they will deal with eventual environmental changes.

SUBERIZED CELL WALLS FORM A PROTECTIVE BARRIER IN PLANTS
SUBERIZED CELL WALLS HAVE A
SEQUENTIALLY LINKED?
COMPONENT OF SUBERIZED CELL
AS A LIPID MEMBRANE
IN SUBERIZED CELL WALLS
CHEMISTRY STRUCTURAL RESULTS
INDUSTRIAL APPLICATIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call