Abstract
Through the study of novel variants of the classical Littlewood–Paley–Stein g-functions, we obtain pointwise estimates for broad classes of highly-singular Fourier multipliers on Rd satisfying regularity hypotheses adapted to fine (subdyadic) scales. In particular, this allows us to efficiently bound such multipliers by geometrically-defined maximal operators via general weighted L2 inequalities, in the spirit of a well-known conjecture of Stein. Our framework applies to solution operators for dispersive PDE, such as the time-dependent free Schrödinger equation, and other highly oscillatory convolution operators that fall well beyond the scope of the Calderón–Zygmund theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.