Abstract

Abstract There are, in principle, direct relations between several important phenomena associated with subduction zones: the depth of oceanic trenches, the magnitude of the net force from trenches acting on subducting plates, the distribution and fault plane orientations of earthquakes, the magnitude of stresses on subduction faults, the bathymetry of back-arc regions, and the magnitudes of gravity and geoid anomalies. These phenomena are related through the stresses transmitted through surface and subducted lithosphere, and are associated with the mass anomaly of the subducted lithosphere. Quantitative estimates suggest that observed trench depths imply a trench pull force on subducting plates which is comparable to the ridge push force but much less than the excess weight of the subducted lithospheric slab. It is further suggested that either the mass anomaly of subducted lithosphere is much less than would be expected on the basis of conventional thermal and compositional models or that (a) a large resistance acts on the upper part of slabs due to high-stress corner flow, and (b) the mass anomaly of the slab is 70–90% compensated either by a broad 1 km-deep back-arc depression or a low density mantle wedge above the slab or both.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.