Abstract

The oceanic asthenosphere is characterized as a low viscosity channel down to 200–300 km depth separating the cold lithosphere from above, and it is intimately linked to a layer of low seismic velocity and prominent seismic anisotropy observed globally beneath ocean basins. While subduction of tectonic plates in convergent margins is well recognized, the fate of oceanic asthenosphere remains enigmatic. We demonstrate that subduction of the oceanic asthenosphere characterized by weak azimuthal anisotropy and strong radial anisotropy explains the essence of sub‐slab shear‐wave splitting patterns, where the fast splitting direction changes from predominantly trench‐parallel (or sub‐parallel) under relatively steep subduction zones to frequently trench‐normal under shallow subduction zones. To explain the observed splitting time, the thickness of the subducted asthenosphere is estimated to be 100 ± 50 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.