Abstract

AbstractSurface measurements of shear wave splitting patterns are widely used to infer the mantle circulation around subducting slabs; however, the relation between mantle flow and seismic anisotropy is still elusive. Finite strain is a direct measurement of time‐dependent deformation and has been proposed as a proxy for the crystal‐preferred orientation (CPO) of mantle minerals. We have conducted a series of numerical models to systematically investigate the mantle flow, finite strain, olivine CPO, and SKS wave splitting in oceanic subduction zones with variable slab width. They demonstrate that the preferred orientations of olivine a axes generally agree with the long (extensional) axes of the finite strain ellipsoid (FSE), even in these very complex mantle flow fields; however, neither the a axis nor the FSE axes necessarily aligns with the instantaneous mantle velocity vector. We identify two domains with distinct deformation mechanisms in the central subplate mantle, where simple shear induced by plate advance dominates at shallow depths and produces trench‐normal fast splitting, while pure shear induced by slab rollback dominates the deeper mantle and results in trench‐parallel fast splitting. The SKS splitting patterns are thus dependent on the competing effects of these two mechanisms and also on the subduction partition ratio γ = Xp/Xt: trench parallel when γ< 1 and trench normal when γ>1. In addition, different mantle deformation mechanisms and SKS splitting patterns are observed in the mantle wedge and around the slab edges, which may aid in the general interpretation of seismic anisotropy observations in natural subduction zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.