Abstract

New sub-Doppler resonances at central frequencies of atomic (molecular) transitions that appear in the spectrum of absorption of the probe optical radiation under the influence of optical pumping propagating in the orthogonal direction through a relatively narrow area of a cylindrical cell containing dilute gas medium are discovered and analyzed. These resonances are induced by specific optical pumping of atoms as they fly freely from the inner cell surface through the pumped region toward the probe optical beam. The obtained mathematical relations are used to investigate the dependence of the discussed resonances on the intensity and spatial distribution of the localized optical pumping. The proposed method could allow reducing the Doppler broadening of the detected spectral lines by the factor equal to the ratio of the effective width of the narrow pumped region to the cell radius. The obtained results may find application in high-resolution spectroscopy of atoms (molecules), as well as for laser-frequency stabilization by using the discovered sub- Doppler resonances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.