Abstract
Homomorphic encryption and secure multi-party computation enable computations on encrypted data. However, both techniques suffer from a large performance overhead. While advances in algorithms might reduce the overhead, we show that achieving perfect (or even computational) confidentiality is not possible without increasing the running time compared to computations on plaintext more than exponentially in some cases. In practice, however, perfect confidentiality is not always required. The paper discusses mechanisms to trade off confidentiality and performance for computing on ciphertexts. It introduces a fine-grained approach to define security levels for variables called (statistical) subdomain privacy. This concept differs substantially from prior work because it treats a variable as confidential or non-confidential depending on the actual value. We further propose privacy-preserving methods for memory access patterns. We apply our techniques to improve performance of control flow logic (loops, if-then-else logic) and arithmetic operations such as multiplications. The evaluation shows that the resulting speedup can be in the order of several magnitudes depending on the privacy needs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.