Abstract

The aim of this investigation was to characterize auditory areas of the primate cerebral cortex on the basis of chemoarchitecture. Cortical areas of the supratemporal plane were delineated in Macaca fuscata (M. fuscata) by immunocytochemical staining for parvalbumin, staining for cytochrome oxidase, examination of cyto- and myeloarchitecture, and retrograde tracing of corticocortical connections. Comparative observations were made on Macaca fascicularis (M. fascicularis). Differential staining of fiber plexuses, probably of thalamic origin, identifies a central core zone of dense immunostaining and a surrounding zone of moderate-to-dense immunostaining composed of anteromedial, lateral, and posteromedial fields. Outside the second zone, there is a third anterolateral zone of weaker immunoreactivity, and, outside that zone, there is a fourth zone in which immunoreactivity is virtually absent. Differences in parvalbumin immunostaining in the auditory fields may reflect differences in relative contributions of thalamic inputs from parvalbumin-immunoreactive cells in the medial geniculate complex. The central core zone and the surrounding three fields can be correlated with major auditory fields previously defined by multiunit mapping and thalamocortical connectivity. The core zone contains a large principal field and an anterior extension. The pattern of corticocortical connections between these and adjoining fields suggests that the anteromedial, lateral, and posteromedial fields represent first steps in three streams of connections passing outward from auditory into association cortex. M. fuscata has an unusually large auditory cortex that is more deeply placed in the lateral sulcus in comparison to that of M. fascicularis. A small annectant gyrus provides a guide to the position of the primary auditory area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call