Abstract
Mader conjectured that every C4-free graph has a subdivision of a clique of order linear in its average degree. We show that every C6-free graph has such a subdivision of a large clique.We also prove the dense case of Mader's conjecture in a stronger sense, i.e., for every c, there is a c′ such that every C4-free graph with average degree cn1/2 has a subdivision of a clique Kℓ with ℓ=⌊c′n1/2⌋ where every edge is subdivided exactly 3 times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.