Abstract

38 primary afferents originating from de-efferented cat tibialis anterior muscle spindles were investigated. Ramp-and-hold stretches of the host muscle were performed with a varying amount of muscle pre-stretch while recording the primary afferent discharges. From the discharge responses an interspike interval function was estimated. This revealed a slow adaptation during the hold phase of stretch which could be approximated quite well by a power function. The slow-adaptation power function exponent (SAE) was found to be rather independent of the amount of pre-stretch applied to the host muscle and grouped around a value characteristic for each afferent. These ‘characteristic SAEs’ showed a clearly bimodal distribution within the population of primaries studied. Moreover, the distribution around both modes was narrow enough to justify the subdivision of the primary afferents according to their characteristic SAE as either high-SAE (10 afferents; 26%) or low-SAE (28 afferents; 74%) afferents. The most likely explanation for this bimodality of slow-adaptation behavior in primary afferents is given by the assumption that the afferent discharge of the passive spindle is mainly provided from a branch innervating either the bag 1 (for high-SAE units) or the bag 2 and chain (for low-SAE units) intrafusal fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call