Abstract

This article concerns second-order time discretization of subdiffusion equations with time-dependent diffusion coefficients. High-order differentiability and regularity estimates are established for subdiffusion equations with time-dependent coefficients. Using these regularity results and a perturbation argument of freezing the diffusion coefficient, we prove that the convolution quadrature generated by the second-order backward differentiation formula, with proper correction at the first time step, can achieve second-order convergence for both nonsmooth initial data and incompatible source term. Numerical experiments are consistent with the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.