Abstract
In a general normed vector space, we study the perturbed minimal time function determined by a bounded closed convex set \(U\) and a proper lower semicontinuous function \(f(\cdot )\). In particular, we show that the Frechet subdifferential and proximal subdifferential of a perturbed minimal time function are representable by virtue of corresponding subdifferential of \(f(\cdot )\) and level sets of the support function of \(U\). Some known results is a special case of these results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.