Abstract
In this paper we give some characterizations for the subdifferential set of the supremum of an arbitrary (possibly infinite) family of proper lower semi-continuous convex functions. This is achieved by means of formulae depending exclusively on the (exact) subdifferential sets and the normal cones to the domains of the involved functions. Our approach makes use of the concept of conical hull intersection property (CHIP, for short). It allows us to establish sufficient conditions guarantying explicit representations for this subdifferential set at any point of the effective domain of the supremum function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.