Abstract

Explicit methods, such as the central difference operator, rely on the economical evaluation of internal forces at each time step of a transient dynamic problem. One-point quadrature applied to the spatial discretization provides the greatest efficiency, but hourglass control is required to eliminate spurious zero energy modes. Computationally practical hourglass control methods involve considerable approximation in evaluating the internal force. Thus, a small additional approximation due to an alternative temporal integration of the hourglass force may not seriously affect the accuracy of the analysis. In particular, the possibility of evaluating the hourglass terms on a larger time interval than the usual stable time step could provide significant efficiencies. The proposed approach of subcycling the hourglass terms is examined in detail with respect to stability and accuracy. Implementation into an explicit finite element program is demonstrated on a three-dimensional example that involves several hourglass modes, and the new method proves to be beneficial for noninertial problems where artificial damping is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.